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We investigate a reversible polymerization processin which individual polymers aggregate and
fragment at a rate proportional to their molecular weight. We ¯nd a nonequilibrium phasetransition
despite the fact that the dynamics are perfectly reversible. When the strength of the fragmentation
processexceedsa critical threshold, the system reaches a thermodynamic steady state where the
total number of polymers is proportional to the system size. The polymer length distribution has a
sharp exponential tail in this case. When the strength of the fragmentation processfalls below the
critical threshold, the steady state becomesnon-thermodynamic as the total number of polymers
grows sub-linearly with the system size. Moreover, the length distribution has an algebraic tail and
the characteristic exponent varies contin uously with the fragmentation rate.
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I. INTR ODUCTION

Equilibrium systemsrelax to a steady state described
by the Gibbs distribution. In contrast, nonequilibrium
systemsare speci¯ed by the dynamics rather then by a
Hamiltonian, and there is no general framework for de-
scribing nonequilibrium steady states. Furthermore, un-
like equilibrium phasetransitions that are characterized
by robust universality classes[1], nonequilibrium phase
transitions are highly sensitive to details of the underly-
ing dynamics [2].

In this paper, we investigatepolymerization dynamics,
and we report that competition betweenaggregationand
fragmentation results in a remarkable non-equilibrium
phasetransition. Despite the fact that the dynamics are
perfectly reversible, there is a nonequilibrium phasetran-
sition from a thermodynamic state where the number of
polymers is proportional to the system size into a non-
thermodynamic state where the number of polymers is
not proportional to the system size.

Reversiblepolymerization is ubiquitous in polymer and
atmospheric chemistry [3{5], and has analogies in net-
works [6] and computer science[7{9]. Reversible poly-
merization includes two competing processes: (i) The
aggregation process[i ] + [j ] ! [i + j ], merger of two
polymer chains of lengths i and j into a larger polymer,
occurs with the aggregation rate K ij ; (ii) The fragmen-
tation process[i + j ] ! [i ] + [j ], breakage of a polymer
into two smaller polymers, proceedswith rate F ij . This
processis reversiblebecausethe aggregationprocessand
the fragmentation processperfectly mirror each other.

Reversible polymerization is described by the master
equations [10]

dck
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=

1
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i + j = k

K ij ci cj ¡ ck
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K k j cj
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Fk j cj + k ¡
1
2

ck

X

i + j = k

Fij (1)

where ck (t) is the density of polymer chains composed
of k monomersat time t. The ¯rst two terms describe
changesdue to aggregation and the next two terms ac-
count for changesdue to fragmentation. The aggregation
and fragmentation rates are (non-negative) symmetric
matrices, K ij = K j i and Fij = Fj i . The determinis-
tic master equations are a surrogate model for the ac-
tual stochastic aggregation-fragmentation process. The
master equationsyields exact averageconcentrations for
in¯nitely large systems.

In the simplest case, the steady state distribution is
found by equating the aggregation °ux with the frag-
mentation °ux,

K ij ci cj = Fij ci + j : (2)

This detailed balance condition speci¯es an equilibrium
state wherethe °uxes betweenany two microscopicstates
of the system balance. Such an equilibrium steady state
exists for example when both the aggregation and the
fragmentation rates are constant [11]. Another equilib-
rium state was found in a model of strings at very high-
temperatures with the rates K ij = ij and Fij = i + j
[12].

The detailed balance equation (2) admits a solution
only when the aggregationand fragmentation rates sat-
isfy special relations, as shown in Appendix A. In gen-
eral, the steady state distribution is speci¯ed by the full
master equations(1) and moreover, the detailed balance
relations (2) may very well be violated. For example, in
a \chipping" processwhere only end-monomerscan de-
tach from the polymer, the matrix Fij is sparse:Fij = 0
when both i; j ¸ 2. For constant aggregation rates, the
chipping processexhibits a nonequilibrium phasetransi-
tion. When the fragmentation rate falls below a certain
threshold, a giant macroscopicpolymer emerges[13{16].

We consider the aggregationand fragmentation rates

K ij = ij ; Fij = ¸: (3)

Theserates, while intermediate betweenthe linear chain
model [11] and the string model [12], violate detailed
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balance (see Appendix A). The product aggregation
rate accounts for the natural situation in which any two
monomersmay form a chemical bond, thereby leading to
mergerof their respective polymers. This polymerization
processhas been widely studied in polymer chemistry
[17{21] and in the context of percolation [22{25]. The
constant fragmentation rate re°ects situations where all
chemical bonds in the linear polymer are equally likely
to break, thereby leading to breakage into two smaller
polymers. This de-polymerization processhas also been
studied extensively [26]. Like the aggregation rate, the
total fragmentation rate is linear in the molecular weight,P

i + j = k Fij = ¸ (k ¡ 1).
Starting with N monomers,we study the nonequilib-

rium steady states that emerge in the reversible poly-
merization process(3). We ¯nd that the system gener-
ally reaches a steady state, and that a nonequilibrium
phasetransition occursat the critical fragmentation rate
¸ c = 1. The average total number of polymers, N tot ,
grows algebraically with the system sizeN ,

N tot » N ° with ° =
2¸

2 + ¸
; (4)

when fragmentation is weak, ¸ < ¸ c. The total number
of polymers grows sub-linearly with the system size be-
cause° < 1. Moreover, large polymers are likely as the
polymer sizedistribution has a broad algebraic tail. The
system develops this non-thermodynamic state through
a gelation transition. We probe this gelation using mo-
ments of the sizedistribution.

In contrast, the system reaches an ordinary steady
state when the fragmentation processis strong. The av-
erage total number of polymers is proportional to the
system size, N tot = (1 ¡ ¸ ¡ 1)N , when ¸ > ¸ c. Large
polymers becomerare sincethe polymer sizedistribution
has a sharp exponential tail.

Interestingly, even though the polymerization pro-
cess is reversible because the underlying aggregation
([i ] + [j ] ! [i + j ]) and fragmentation ([i + j ] ! [i ] + [j ])
processesperfectly mirror each other and none of the
transition rates (3) vanish, the breakdown of detailed
balance leads to a remarkable phase transition involv-
ing a non-thermodynamic phase where the number of
polymers is not proportional to the system size and a
thermodynamic phasewhere the number of polymers is
proportional to the system size.

The rest of this paper is organized as follows. The
thermodynamic steady states that occur under strong
fragmentation are examined in the next section, while
the non-thermodynamic steady states that emergewhen
fragmentation is weak are analyzed in section I I I. The
gelation transition is probed using the moments of the
size distribution in section IV. Monte Carlo simulation
results validating the theoretical predictions for the non-
thermodynamic phase are detailed in section V. We
discussthe results and several open-endedquestions in
section VI. AppendicesA{C contain several technical
derivations.

I I. THERMOD YNAMIC PHASE

Our focus is the steady state behavior and in particu-
lar, the stationary polymer sizedensity ck that satis¯es

1
2

X

i + j = k

ij ci cj ¡ k ck = ¡ ¸
1X

j >k

cj +
¸
2

(k ¡ 1)ck : (5)

This steadystate equation is obtained by substituting the
aggregationand fragmentation rates (3) into the station-
ary masterequation (1). At the steadystate, changesdue
to aggregation,represented on the left hand side,balance
changesdue to fragmentation, represented on the right
hand side. Sinceboth aggregationand fragmentation do
not alter the total mass,the overall massdensity

P
k kck

is a conserved quantit y, as follows from the rate equation
(1). We conveniently set the normalization

P
k kck = 1

without lossof generality.
The total polymer density M 0 =

P
k ck is the most

elementary probe for the state of the system. At the
steady state, this quantit y satis¯es

1
2

=
¸
2

(1 ¡ M 0) ; (6)

an equation obtained by summing (5) and by using the
identit y

P
k

P
j ¸ k cj =

P
j cj

P
k<j 1 =

P
j (j ¡ 1)cj and

the normalization condition
P

k kck = 1. The total den-
sity is non-zero

M 0 = 1 ¡ ¸ ¡ 1; (7)

when the fragmentation rate is su±ciently strong, ¸ > 1.
We focus on this strong fragmentation regime in the rest
of this section.

Let us assumethat the system is large but ¯nite with
a total mass equal N , a state that can be achieved by
starting with N monomers, for example. The expected
total number of polymers, N tot = N

P
k ck = N M 0 is

proportional to the system size N , and therefore, the
system is in a thermodynamic state.

The polymer sizedensity can be calculated by utilizing
the recurrent nature [27] of Equation (5). For instance,
the monomer and the dimer densitiesare

c1 =
¸ ¡ 1
¸ + 1

; (8a)

c2 =
(¸ ¡ 1)(3¸ + 1)
(¸ + 1)2(3¸ + 4)

: (8b)

In general, the polymer sizedensity is ¯nite in the ther-
modynamic phase,¸ > 1. Very large polymers are rare
sincethe sizedistribution decays exponentially

ck ' Ak ¡ 5=2 e¡ ak ; (9)

when k ! 1 . This result is derived in Appendix B.
When fragmentation is extremely strong, the system

consists primarily of monomers: c1 = 1 + O(¸ ¡ 1) and
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c2 = ¸ ¡ 1 + O(¸ ¡ 2) when ¸ ! 1 . The leading asymp-
totic behavior canbeobtained exactly in this strong frag-
mentation limit,

ck '
kk ¡ 2

k!

µ
2
¸

¶ k ¡ 1

; (10)

for all k. This expression,obtained in Appendix C, is
compatible with the genericexponential tail (9).

The near-critical behavior

The total density, the monomerdensity, and the dimer
density all vanish near the transition point, M 0 ' (¸ ¡ 1),
c1 ' 1

2 (¸ ¡ 1), and c2 ' 1
7 (¸ ¡ 1) as¸ ! 1. This behavior

suggeststhe perturbativ e approach,

ck = ² bk (11)

with the small parameter ² = ¸ ¡ 1. The ¯rst two co-
e±cients are b1 = 1

2 and b2 = 1
7 . We substitute this

form into the stationary equation (5) and observe that
the nonlinear aggregationterm / ²2 is negligible. Conse-
quently , to leading order, the polymer sizedensity obeys
the linear recursion equations

k bk =
1X

j = k+1

bj ¡
1
2

(k ¡ 1)bk ; (12a)

(k + 1)bk+1 =
1X

j = k+2

bj ¡
1
2

k bk+1 : (12b)

The secondequation is obtained from the ¯rst by an in-
dex shift. We subtract the two equations and obtain a
recursion relation for the coe±cients bk ,

bk+1

bk
=

k ¡ 1
3

k + 4
3

: (13)

The coe±cients can be conveniently expressedas a ratio
of Gamma functions, bk / ¡( k ¡ 1=3)=¡( k + 4=3), by
using the identit y ¡( x + 1)=¡( x) = x. The polymer size
density is therefore

bk =
1
2

¡( 7
3 )

¡( 2
3 )

¡( k ¡ 1
3 )

¡( k + 4
3 )

; (14)

where the proportionalit y constant is set by b1 = 1
2 .

Near criticalit y, the sizedensity is algebraic,

ck » ² k¡ 5=3; (15)

over a substantial range,k ¿ k¤. This result follows from
(14) and lim x !1 xa¡( x)=¡( x + a) = 1. Therefore, the
likelihood of ¯nding large polymers becomessubstantial
as the phasetransition point is approached. The cuto®
scale k¤, set by mass conservation,

P k¤
k=1 kck = 1, is

divergent

k¤ » ² ¡ 3 : (16)

The size distribution is sharply suppressedaccording to
(9) beyond this scale. Using the relation A » a¡ 1=2,
derived in appendix B, and a » k¡ 1

¤ we deducethat

ck » ² ¡ 3=2k¡ 5=2e¡ const £ ² 3 k (17)

for k À k¤. Indeed, this large sizebehavior matches the
small size behavior (15) at the crossover scale(16). We
concludethat the convolution term, that accounts for the
creation of very large polymers from smaller polymers, is
relevant only at very large scales,k À k¤. Otherwise,
this term doesnot a®ectthe density of small polymers.

For completeness,we mention that the leading asymp-
totic behavior of the moments, M n =

P
k kn ck , readily

follows from the density (15) and the cuto® (16),

M n »

(
² ¡ 3(n ¡ 1) n > 2=3
1 n < 2=3:

(18)

Su±ciently large order moments divergein the vicinit y of
the transition point, a consequenceof the algebraic tail
(15). The low order moments are ¯nite, however.

I I I. NON-THERMOD YNAMIC PHASE

As the critical point is approached, the nonlinear con-
volution term in (5) becomesirrelevant over the divergent
scale(16). By continuit y, we deducethat the convolution
term is negligible when ¸ < 1. Consequently , the station-
ary distribution obeys the linear equation

k ck = ¸

0

@
1X

k=1

ck ¡
kX

j =1

cj

1

A ¡
¸
2

(k ¡ 1)ck (19)

when ¸ < 1. We intro duce the normalized size density,
½k = ck =

P
k ck , with

P
k ¸ 1 ½k = 1. With this transfor-

mation, the stationary equation (19) becomes

k ½k = ¸

0

@1 ¡
kX

j =1

½j

1

A ¡
¸
2

(k ¡ 1)½k : (20)

The monomerand dimer densitiesfollows immediately,

½1 =
¸

1 + ¸
; (21a)

½2 =
2¸

(1 + ¸ )(4 + 3¸ )
: (21b)

The normalized densities undergo a phasetransition at
¸ c = 1, as shown in ¯gure 1. The fraction of monomers
is not a®ectedby the convolution term and (21a) holds
for all ¸ . However, the dimer density (21b) di®ersfrom
the expression½2 = ¸ (1+3 ¸ )

(1+ ¸ )2 (4+3 ¸ ) for ¸ < 1 implied by
(8b) and (7). Similarly, the normalized sizedensities½k
exhibit a phasetransition for all k > 1.
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FIG. 1: The normalized dimer density ½2 versus the normal-
ized monomer density ½1 . The phasetransition at ¸ c = 1 is re-
°ected by the discontin uit y in the ¯rst derivativ e at ½1 = 1=2.

Generally, we recast Eq. (20) into the following recur-
sion for the normalized densities

½k+1

½k
=

k ¡ ¸
2+ ¸

k + 2(1+ ¸ )
2+ ¸

: (22)

This recursion is obtained by repeating the steps
leading to (13). Again, we express the nor-
malized densities as a ratio of Gamma functions,
½k / ¡( k ¡ ¸

2+ ¸ )=¡( k + 2(1+ ¸ )
2+ ¸ ). The monomer density

(21a) sets the proportionalit y constant and hence,

½k =
¸

1 + ¸

¡
³

1 + 2(1+ ¸ )
2+ ¸

´

¡
³

1 ¡ ¸
2+ ¸

´
¡

³
k ¡ ¸

2+ ¸

´

¡
³

k + 2(1+ ¸ )
2+ ¸

´ : (23)

The sizedensity has an algebraic tail,

½k » k¡ ¯ with ¯ =
2 + 3¸
2 + ¸

; (24)

as k ! 1 , thereby implying that large polymers are
likely. The decay exponent 1 < ¯ < 5=3 is not uni-
versal. Of course, this power-law behavior matches the
near-critical tail (17) since¯ ! 5=3 when ¸ ! 1.

The sizedensity obeys ck / ½k , and the N -dependent
proportionalit y constant is obtained from the masscon-
servation condition

P N
k=1 kck = 1 where the upper limit

of integration is set by the systemsize. This sum is dom-
inated by the density of large polymers. By performing
the summation, we ¯nd that the polymer size density
dependson the system size

ck » N ¯ ¡ 2k¡ ¯ : (25)

The total number of clusters N tot » N
P

k ck grows sub-
linearly with the systemsizeN tot » N ° with ° = ¯ ¡ 1 as
announcedin (4). Therefore, the total polymer density,
M 0 » N ¯ ¡ 2, dependson the systemsizein contrast with
the behavior when ¸ > 1. In deriving the steady state

equation (19), we assumedthat the convolution term is
negligible. This assumption is consistent with the fact
that the amplitude N ¯ ¡ 2 in (25) vanishesas the system
sizediverges.

Moreover, the expectedtotal number of polymer of size
k, Ck = N ck , is as follows, Ck » N ° k¡ ¯ with ° = 2¸

2+ ¸ .
This steady state is not thermodynamic! The number of
polymers is much smaller then the system size, yet the
number of polymersstill divergeswith the total mass:Ck
grows sub-linearly with the system sizebecause° < 1.

For irreversible polymerization, ¸ = 0, all masseven-
tually endsup in a single giant polymer, as re°ected by
the characteristic exponent ° = 0. The total number of
polymers still grows sub-linearly, N tot » N 2=3, when the
critical point is approached, ¸ ! 1.

In the thermodynamic phase, all polymers are ¯nite
in size. Indeed, the exponential tail behavior (9) im-
plies that the largest polymers are ¯nite in scale. Near
criticalit y, the scaleof the largest polymers divergesac-
cording to (16). In the non-thermodynamic phase,there
are polymers of all possiblescalesbecausethe power-law
behavior (25) holds up to the systemsize/ N . Remark-
ably, there are polymers that contain a ¯nite fraction of
all the massin the systembecauseaccording to (25), the
total number of macroscopicclusters, N

P
k ¸ const :£ N ck

is of the order one.
There are therefore very di®erent behaviors in the two

phases. In the theormodynamic phase, there are many
small clusters. In the non-thermodynamic phase, there
are a few large clusters. A small number of macroscopic
clusters contain a fraction of the masswhile the rest of
the massis contained in clusters of all possiblescalesup
to the system size.

The power-law distribution (24) accounts for a compe-
tition between two °uxes. There is a °ux of massfrom
small scalesto large scalesthat is generatedby the aggre-
gation processand a °ux from large scaleto small scales
causedby fragmentation. The power-law behavior holds
for all scales,indicating that thesetwo °uxes balanceat
all intermediate scales.Similar competitions betweenthe
°uxes occur in °uid turbulence [28], passive scalaradvec-
tion [29], wave turbulence [30], granular gases[31], and
driven aggregationsystems[32{34]. However, reversible
polymerization di®ers from these driven system in that
there is no external injection of mass to maintain the
steady-state.

IV. THE GELA TION TRANSITION

We now study the approach toward the steady state
speci¯ed by the full master equation

dck

dt
=

1
2

X

i + j = k

ij ci cj ¡ k ck + ¸
1X

j >k

cj ¡
¸
2

(k ¡ 1)ck : (26)

Initially , there are only monomers,ck (t = 0) = ±k ;1.
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First, we consider the total polymer density M 0 that
obeys the linear rate equation

dM0

dt
= ¡

1
2

+
¸
2

(1 ¡ M 0): (27)

Subject to the initial condition M 0(0) = 1, the total den-
sity is

M 0 = 1 ¡ ¸ ¡ 1 + ¸ ¡ 1 e¡ ¸t= 2: (28)

Hence, the steady state (7) is approached exponen-
tially fast in the thermodynamic phase. Moreover, the
monomerand the dimer densitiesalsorelax exponentially
fast as in (28) and in general, the polymer size density
quickly approachesthe steady state when ¸ > 1.

We focus on the kinetics in the more interesting non-
thermodynamic phase where the total polymer density
(28) vanishesat time t0 = 2

¸ ln 1
1¡ ¸ . This behavior is

consistent with the vanishing total density, M 0 » N ¯ ¡ 2,
implied by (25). Of course,the negative expression(28)
is invalid beyond the time t0.

The moments M n =
P

k kn ck provide a direct probe of
the kinetics. In the non-thermodynamic phase,the sys-
tem nucleates large macroscopicgels and consequently ,
large moments diverge with the system size as follows
from (25). This, together with the vanishing overall den-
sity M 0, indicates that the system undergoes a gelation
transition at a ¯nite time. At the gelation time tg, a gi-
ant polymer or a gel emergesasis the casefor irreversible
polymerization (¸ = 0). From the master equation (26),
the moments evolve according to

dMn

dt
=

1
2

n ¡ 1X

m =1

µ
n
m

¶
M m +1 M n +1 ¡ m ¡

¸
2

n ¡ 1
n + 1

M n +1

+
¸

n + 1

nX

m =2

µ
n + 1

m

¶
Bm M n +1 ¡ m (29)

where Bm are the Bernoulli numbers [35]. For example,
the secondmoment obeysdMn =dt = M 2

2 ¡ ¸
6 (M 3¡ 1). We

assumethat large order moments divergealgebraically at
the gelation time, M n » (tg ¡ t)¡ (an + b) for n ¸ 1, and
observe that the last term in the hierarchical equation
(29) is negligible compared with the rest of the terms.
We require that the time dependent term, the aggre-
gation term, and the remaining fragmentation term are
comparableand ¯nd that a = ¡ b = 1. Hence,

M n » (tg ¡ t)¡ (n ¡ 1) (30)

for n ¸ 1. Indeed, the moments divergeat a ¯nite time.
The exponent n¡ 1 characterizing this divergenceis com-
patible with the near critical behavior (18). The diver-
gence (30) is di®erent than the M n » (tg ¡ t)¡ (2n ¡ 3)

behavior in irreversible fragmentation [23], and there-
fore, fragmentation quantitativ ely alters the nature of the
gelation transition.

We concludethat the solution to the master equation
(26) exhibits a ¯nite time singularity. Even though we

cannot obtain the gelation time tg exactly, relevant prop-
erties of the sizedensity including the moments can still
be obtained analytically. In particular, the form of the
size density at the gelation time can be calculated by
balancing the °uxes of massdue to aggregationand frag-
mentation, following the scaling analysis in ref. [36].

ConsiderM (n ) , the total massdensity of polymerswith
sizesmaller then n,

M (n ) (t) =
nX

k=1

kck (t): (31)

According to the master equation (26), this quantit y
obeys

dM (n )

dt
= ¡

nX

i =1

1X

j + i = n ¡ 1

i 2j ci cj +
1
2

¸n (n+ 1)
1X

j = n +1

cj : (32)

Wenow take the n ! 1 limit. The aggregationlossterm
accounts for loss of ¯nite size polymers to the in¯nitely
large gel while the fragmentation term accounts for the
balancing °ux from the gel into small masses.We require
that the two °uxes balance at the gelation point. We
assumethat at the gelation point, the sizedensity decays
algebraically

ck (t = tg) » k¡ ¿; (33)

for k À 1, as is the casefor irreversible polymerization
[24]. By dimensionalcounting, the aggregation°ux term
scalesas n5¡ 2¿ while the fragmentation °ux scalesas
n3¡ ¿. The two °uxes balancewhen 5 ¡ 2¿ = 3 ¡ ¿ and
as a result ¿ = 2. Therefore, ck (t = tg) » k¡ 2, a behav-
ior that is consistent with the aforementioned divergence
of the moments (30) when the power-law behavior (33)
holds up to a cuto® scale that diverges near gelation,
k ¿ (tg ¡ t)¡ 1.

The normalization condition
P

k kck = 1 imposesthe
exponent restriction ¿ > 2 but the heuristic argument
above yields precisely the marginal value ¿ = 2. We
thereforeanticipate that there is a logarithmic correction
with the following form ck » k¡ 2(ln k)¡ ¹ . We substitute
this form into (32) and then, the aggregation term is of
the order n [ln n]1¡ 2¹ while the fragmentation term is of
the order n [ln n]¡ ¹ . Therefore, ¹ = 1, and [37]

ck » k¡ 2[ln k]¡ 1 (34)

for k À 1. This decay is milder then the ck » k¡ 5=2

behavior found for irreversible polymerization [24], and
therefore, there aremany more largeclustersin reversible
polymerization.

The size of the largest gel at the gelation transition
follows immediately from the extremestatistics criterion,
N

P kg

k=1 ck = 1. Remarkably, this size is nearly macro-
scopic in the sizeof the system,

kg » N [ln N ]¡ 1: (35)
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This gel sizeis much larger comparedwith the kg » N 2=3

behavior in reversible polymerization. This increased
scale enables the gel to withstand fragmentation. We
alsocomment that the nearly macroscopicsizescale(35)
provides the appropriate cuto® in (31), n » kg, and that
at the gelation point, the upward massaggregation°ux
and the downward mass fragmentation °ux are nearly
macroscopic,that is, they are proportional to the system
sizeup to a logarithmic correction.

The critical case

For completeness,we discuss kinetics in the critical
case¸ = 1 where the the cluster density (28) is purely
exponential, M 0 = e¡ t= 2. Similar decay characterizesthe
leading behavior of the size density. For example, the
monomer density obeys dc1=dt = ¡ c1 + (M 0 ¡ c1) and
consequently ,

c1 =
2
3

e¡ t= 2 +
1
3

e¡ 2t : (36)

Only the ¯rst term is relevant asymptotically,
c1 ' 2

3 e¡ t= 2. In general, ck ' uk e¡ t= 2, and by
substituting this expression into the time dependent
master equation (26), we observe that the nonlinear
term is negligible. Consequently , the coe±cients uk
satisfy the recursion equation

µ
k ¡

1
2

¶
uk =

1X

j = k+1

uj ¡
1
2

(k ¡ 1)uk : (37)

From this recursion, the coe±cients uk satisfy uk+1 =uk =
(k ¡ 2=3)=(k + 1). Therefore, the leading behavior of the
sizedensity is as follows

uk =
2

3¡( 1
3 )

¡( k ¡ 2
3 )

¡( k + 1)
: (38)

The tail of the sizedensity matches the near critical be-
havior (15), ck » e¡ t= 2k¡ 5=3.

V. NUMERICAL SIMULA TIONS

We performed numerical simulations to validate the
theoretical predictions. Below, we present results for the
non-thermodynamic phase.

The simulations were performed by starting with N
monomers and were carried by repeating the following
Monte Carlo step. At each step, the total aggregation
rate Ra = 1

N

P
i 6= j si sj and the total fragmentation rate

Rf = 2
P

i (si ¡ 1) arecalculatedwheresi is the sizeof the
i th polymer. Of course,both of these rates are propor-
tional to the systemsize,Ra / Rf / N . An aggregation
event is executedwith probabilit y Ra=(Ra + Rf ), while a
fragmentation event is executedwith the complementary

probabilit y Rf =(Ra + Rf ). In each aggregation event,
one polymer is chosen with probabilit y proportional to
its sizeand is mergedwith another polymer, also chosen
with probabilit y proportional to its size. In a fragmenta-
tion event, a polymer, randomly chosenwith probabilit y
proportional to the number of its bonds,is randomly split
into two smaller polymers. Time is updated by the in-
verse of the total rate t ! t + (Ra + Rf )¡ 1 after each
Monte Carlo step. As a check, wesuccessfullyreproduced
the total polymer density (7).

In the non-thermodynamic phase, the system under-
goesa gelation transition and then relaxesto the steady
state. We run the simulations until the systemrelaxed to
the steady state and then obtained the size distribution
from a long seriesof measurements to reduce statistical
°uctuations. The simulations results are for systemsof
sizeN = 105. We present results for the normalized den-
sities ½k predicted in (23). Overall, there is very good
agreement between the theoretical predictions and the
simulation results as shown in ¯gure 2. The size distri-
bution agreeswith (23) and the tail of the distribution
follows a power-law as in (24). The simulation results
agreewith the theoretical results slightly better near the
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FIG. 2: The size distribution ½k versusk for ¸ = 0:9 (a) and
¸ = 0:5 (b). The simulations results are for a system of size
N = 105 .
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FIG. 3: Fluctuations in the total number of clusters. Shown
are the average number of clusters, hN tot i and the variance,
¾2 = hN 2

tot i ¡ hN tot i 2 for ¸ = 0:5.

phasetransition point (Figures 2a and 2b). Sincethe to-
tal number of clustersgrows sub-linearly with the system
size,N tot » N ° with ° < 1, extremely large systemsare
neededto reducethe magnitude of the statistical °uctu-
ations. Such °uctuations are most pronouncedat the tail
region wherethe discrepancybetweenthe theory and the
simulation is a result of the limited system size.

To quantify °uctuations in the total number of poly-
mers, we also measured the variance ¾2 = hN 2

tot i ¡
hN tot i 2. We ¯nd that the °uctuations follow a central-
limit like behavior ¾2 » hN tot i (¯gure 3) and therefore,

¾2 » N ° with ° =
2¸

¸ + 2
(39)

as in (4).

VI. DISCUSSION

In summary, we studied stationary and dynamical
properties of reversible polymerization. We found an
interesting phase transition involving a thermodynamic
phaseand a non-thermodynamic phase. When fragmen-
tation is strong, the systemis in a thermodynamic phase
and the number of polymers is proportional to the sys-
tem size. The system includes a large number of small
polymers. When fragmentation is weak, the system is
in a non-thermodynamic phase as the total number of
polymers grows sub-linearly with the systemsize. In this
phase, there is a small number of large polymers since
the size distribution is power-law. Moreover, the poly-
mer sizesare distributed at all scales. Macroscopicgels
may exist as well.

In the thermodynamic phase, the system quickly ap-
proachesthe steady state. The time-dependent behavior
is much richer in the non-thermodynamic phase. The

system exhibits a ¯nite-time singularity: large moments
of the sizedistribution divergeat the ¯nite gelation time.
At this time, the system nucleatesmacroscopicgelsand
the size distribution follows a universal algebraic decay.
Past the gelation time, there is a secondrelaxation stage
leading the system to a state where there are two bal-
ancing °uxes of mass: aggregation transfers mass from
small scalesto large scalesand fragmentation transfers
massfrom largescalesto small scales.The stationary size
distribution is algebraic but the characteristic exponent
is not universal.

Even though the aggregation processis described by
non-linear terms, the analysisin the non-thermodynamic
phaseinvolves linear equations becausethe aggregation
gain term is relevant only at the largest scale. Neverthe-
less,formation of gelsat the largest possiblescale(in our
case,the systemsize) is crucial in maintaining a station-
ary state. Understanding the distribution of macroscopic
gels is an open challenge,and our numerical simulations
revealan interesting anomalywith an enhancement of the
population of macroscopicgelsover the algebraic distri-
bution (25) at the maximal scale.

Missing from our calculations is a ¯nite-size scaling
analysis [38{41] near the phase transition point. In-
terestingly, the total number of clusters grows sub-
linearly, N tot » C(¸ ) N 2=3, just below the phase tran-
sition point, but linearly just above the phasetransition
point, N tot » (¸ ¡ 1)N . Therefore, the amplitude C(¸ )
may very well be divergent, and moreover, there must
be an intermediate rangeof fragmentation rates centered
around the critical point with a smooth crossover be-
tweenthe two phases.The width of this transition region
should vanish as the system size increases.

Understanding °uctuations is another interesting di-
rection for further research. We ¯nd Gaussian °uctua-
tions in the thermodynamic phaseand are able to com-
pute the variance ¾2 = 2

¸ N but we are unable to obtain
(39) in the non-thermodynamic phase.

We also checked that the samephasetransition gener-
ally holds as long as the aggregation rate is asymptoti-
cally proportional to the molecular weights; for instance,
when K ij = Aij + B (i + j ) + C, a classof models that
often arise in polymer chemistry [3, 4]. A more com-
plete characterization of phase transitions in reversible
polymerization is another avenue for future work.

Finally, another challengeis to understand the behav-
ior in low spatial dimensionsand in particular, to inves-
tigate the nature of the gelation transition as well as the
nature of the nonequilibrium steady state.
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APPENDIX A: DET AILED BALANCE

In this appendix, wedemonstratethat the detailed bal-
anceequations(2) do not generally have a solution. The
sizedensitiesck satisfy

K 11c2
1 = F11c2

K 12c1c2 = F12c3

K 13c1c3 = F13c4

K 22c2
2 = F22c4

(A1)

for k = 1; 2; 3; 4. The dimer density and the trimer den-
sity are uniquely expressedin terms of the monomerden-
sity,

c2 =
K 11

F11
c2

1; c3 =
K 11

F11

K 12

F12
c3

1: (A2)

However, there are two expressionsfor the 4-mer density

c4 =
K 11

F11

K 12

F12

K 13

F13
c4

1 c4 =
³

K 11
F11

´ 2
K 22
F22

c4
1: (A3)

These two are identical only when the aggregation and
the fragmentation rates satisfy the constraint

K 12

F12

K 13

F13
=

K 11

F11

K 22

F22
: (A4)

Therefore, the detailed balanceequations(2) have a solu-
tion only for specialaggregationand fragmentation rates.
The constraint (A4) re°ects the fact that there are mul-
tiple paths between two states of the system. For ex-
ample, a 4-mer may be formed by two dimers or by a
trimer and a monomer. The detailed balance condition
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(2) requires that the °uxes between any two states of
the system balance along all possible paths. This con-
dition leads to constraints of the type (A4) . The rates
(3) violate the constraint (A4) as well as in¯nitely many
other constraints. We conclude that in general, the de-
tailed balanceequationsare overdetermined | there are
in¯nitely many constraints like (A4) , and a solution does
not necessarilyexist.

APPENDIX B: LAR GE-SIZE ASYMPTOTICS

We analyze the large-sizeasymptotic behavior of the
polymer size-density in the thermodynamic phaseby in-
tro ducing the generating function

G(z) =
X

k

ck ekz : (B1)

The generating function obeys the di®erential equation

(G0)2

2
¡ G0 = ¸

G ¡ M 0ez

1 ¡ ez ¡
¸ (G ¡ G0)

2
(B2)

where 0 ´ d
dz as follows from (5). Next, we shift the

generating function by the total density

G(z) = M 0 + F (z); (B3)

where M 0 is given by (7). With this transformation, the
di®erential equation (B2) becomes

(F 0)2 ¡ (2 + ¸ )F 0+ 1 ¡ ¸ + ¸F
ez + 1
ez ¡ 1

= 0: (B4)

By solving this quadratic equation for F 0 we ¯nd

F 0(z) = 1 +
¸
2

¡
p

©(z) (B5)

with the shorthand notation

©(z) =
1
4

¸ 2 + 2¸ ¡ ¸F (z)
ez + 1
ez ¡ 1

: (B6)

The asymptotic behavior of the size density follows
from the singular behavior of the generating function.
For instance, the asymptotic behavior

ck ' Ak ¡ ® e¡ ak (B7)

implies that the generating function has the following
expansion

G(z) = G(a) + G0(a)(z ¡ a) + A¡(1 ¡ ®)(a ¡ z)®¡ 1 + : : :
(B8)

when z ! a. Here, it is implicitly assumed that
2 < ® < 3. By di®erentiating this equation and by us-
ing G0 = F 0, we further obtain

F 0(z) = F 0(a) + A¡(2 ¡ ®)(a ¡ z)®¡ 2: (B9)

We now choosea to be the root of ©(z), ©(a) = 0, and
as a result, equation (B5) becomes

F 0(z) = 1 +
¸
2

¡
p

¡ ©0(a) (a ¡ z)1=2 + : : : (B10)

when z ! a. We obtain F 0(a) = 1 + ¸= 2 by matching
the regular terms in (B9) and (B10), and

® = 5=2; A¡( ¡ 1=2) = ¡
p

¡ ©0(a) (B11)

by matching the singular terms. Therefore, the asymp-
totic behavior is (9).

The amplitude A can be expressedin terms of ©0(a).
Di®erentiation of equation (B6) yields

©0(z) = ¡ ¸
·
F 0(z)

ez + 1
ez ¡ 1

¡ 2F (z)
ez

(ez ¡ 1)2

¸
: (B12)

We next set z = a and use

F 0(a) = 1 +
¸
2

; 2F (a)
ea + 1
ea ¡ 1

= 4 +
¸
2

; (B13)

that follows from (B6) and ©(a) = 0 to obtain

©0(a) = ¡
¸
2

·
(2 + ¸ )

ea + 1
ea ¡ 1

¡ (8 + ¸ )
ea

e2a ¡ 1

¸
: (B14)

By using equations (B11) and (B14) together with the
identit y ¡( ¡ 1=2) = ¡ 2¡(1 =2) = ¡

p
4¼we obtain a rela-

tion betweenthe amplitude A and the constant a,

A =

s
¸
8¼

ea + 1
ea ¡ 1

·
2 + ¸ ¡ (8 + ¸ )

ea

(ea + 1)2

¸
: (B15)

In particular, A '
p

3=(16¼a), when ¸ ! 1.

APPENDIX C: EXTREMEL Y STR ONG
FRA GMENT ATION

The leading asymptotic behavior in the strong frag-
mentation limit, ¸ ! 1 , can be obtained analytically.
The steadystate equation (5) shows that c1 = 1+ O(¸ ¡ 1)
and c2 = ¸ ¡ 1 + O(¸ ¡ 2), and that in general,

ck '
µ

2
¸

¶ k ¡ 1

hk (C1)

when ¸ ! 1 .
To leading order, this form is consistent with the gov-

erning equation (5) when the coe±cients hk satisfy the
recursion equation

(k ¡ 1)hk =
1
2

X

i + j = k

ij hi hj : (C2)

The ¯rst two coe±cients are h1 = 1 and h2 = 1=2.
We solve this recursion using the generating equation
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H (z) =
P

k khk ekz . Next, we multiply (C2) by kekz and
sum over all k to ¯nd that the generating function satis-
¯es the nonlinear di®erential equation

H 0 ¡ H = H H 0: (C3)

We now integrate this equation and ¯nd the implicit so-
lution H e¡ H = ez . The explicit solution

H (z) =
1X

k=1

kk ¡ 1

k!
ekz (C4)

follows from the Lagrangeinversion formula [42]. There-

fore, the coe±cients are hk = kk ¡ 2=k! and the leading
asymptotic behavior is (10). The large-sizeasymptotic
behavior

ck =
e

p
2¼

k¡ 5=2
µ

2e
¸

¶ k ¡ 1

; (C5)

when k À 1, obtained using the Stirling formula
n! »

p
2¼nnn e¡ n , is consistent with the generic asymp-

totic behavior (9).


